69 research outputs found

    Establishing an optimized method for the separation of low and high abundance blood plasma proteins

    Get PDF
    The study tested the efficiency and reproducibility of a method for optimal separation of low and high abundant proteins in blood plasma. Firstly, three methods for the separation and concentration of eluted (E: low abundance), or bound (B: high abundance) proteins were investigated: TCA protein precipitation, the ReadyPrep™ 2-D cleanup Kit and Vivaspin Turbo 4, 5 kDa ultrafiltration units. Secondly, the efficiency and reproducibility of a Seppro column or a ProteoExtract Albumin/IgG column were assessed by quantification of E and B proteins. Thirdly, the efficiency of two elution buffers, containing either 25% or 10% glycerol for elution of the bound protein, was assessed by measuring the remaining eluted volume and the final protein concentration. Compared to the samples treated with TCA protein precipitation and the ReadyPrep™ 2-D cleanup Kit, the E and B proteins concentrated by the Vivaspin4, 5 kDa ultrafiltration unit were separated well in both 1-D and 2-D gels. The depletion efficiency of abundant protein in the Seppro column was reduced after 15 cycles of sample processing and regeneration and the average ratio of E/(B + E) × 100% was 37 ± 11(%) with a poor sample reproducibility as shown by a high coefficient of variation (CV = 30%). However, when the ProteoExtract Albumin/IgG column was used, the ratio of E/(B + E) × 100% was 43 ± 3.1% (n = 6) and its CV was 7.1%, showing good reproducibility. Furthermore, the elution buffer containing 10% (w/v) glycerol increased the rate of B protein elution from the ProteoExtract Albumin/IgG column, and an appropriate protein concentration (3.5 µg/µl) for a 2-D gel assay could also be obtained when it was concentrated with Vivaspin Turbo 4, 5 kDa ultrafiltration unit. In conclusion, the ProteoExtract Albumin/IgG column shows good reproducibility of preparation of low and high abundance blood plasma proteins when using the elution buffer containing 10% (w/v) glycerol. The optimized method of preparation of low/high abundance plasma proteins was when plasma was eluted through a ProteoExtract Albumin/IgG removal column, the column was further washed with elution buffer containing 10% glycerol. The first and second elution containing the low and high abundance plasma proteins, respectively, were further concentrated using Vivaspin® Turbo 4, 5 kDa ultrafiltration units for 1 or 2-D gel electrophoresis

    Geochemistry of the Martian Meteorite GRV 90027

    Get PDF
    GRV 90027 is a Martian lherzolitic shergottites (L-S) containing poikilitic, non-poikilitic, and melted pocket components. GRV 99027 is mainly composed of olive (55 vol %) and pyroxene (37.5 vol %), with minor maskelynite (6 vol %) and chromite (1.5 vol %), and trace white lockite and troilite, ect. In this paper, the mineralogy and petrology of GRV 99027 are reported; in addition, the geochemical characteristics of the REEs and H isotopes in the GRV 99027 are also further investigated. The ∑REE in GRV 99027 is relatively low; HREEs are enriched in olivine and pyroxene grains; LREEs are enriched in plagioclase with a high positive Eu anomaly. High ∑REE value is found in rare mineral whitlockite (less than 0.2 vol %), LREE ≈ HREE, and whitlockite has a negative Eu anomaly. The REE distribution patterns of the whole rock of GRV 99027 is similar to but different from that of other L-S Martian meteorites, indicating that they came from different location of Mars. GRV 99027 has a high δD value. Different water-bearing minerals give different contribution for δD value. The δD of phosphates generally does not correlate with water content, and δD has a weak negative correlation with water content. GRV 99027 can be classified as an L-S Martian meteorite based on mineralogical assemblage patterns, REE distribution patterns, and hydrogen isotope. The isotope data of Sr, Nd, Pb, Os and REE from other L-S Martian meteorites were collected to discuss the formation history of the GRV 99027. Similar to other L-S Martian meteorites, GRV 99027 originated from part of Mars mantle; during one strong impact event about 4M years ago, the meteorites were ejected from deep mantle into space, and traveled for a different duration in space (indicated by different cosmic exposure time), and captured by the Earth later in different time, ultmiately falling on the Antarctica as L-S Martian meteor ites

    A polygenic basis for four classical Fredrickson hyperlipoproteinemia phenotypes that are characterized by hypertriglyceridemia

    Get PDF
    Numerous single nucleotide polymorphisms (SNPs) have been found in recent genome wide association studies (GWAS) to be associated with subtle plasma triglyceride (TG) variation in normolipidemic subjects. However, since these GWAS did not specifically evaluate patients with rare disorders of lipoprotein metabolism—‘hyperlipoproteinemia’ (HLP)—it remains largely unresolved whether any of these SNP determinants of modest physiological changes in TG are necessarily also determinants of most HLP phenotypes. To address this question, we evaluated 28 TG-associated SNPs from GWAS in 386 unrelated adult patients with one of five Fredrickson phenotypes (HLP types 2A, 2B, 3, 4 and 5) and 242 matched normolipidemic controls. We found that several SNPs associated with TG in normolipidemic samples, including APOA5 p.S19W and -1131T>C, TRIB1 rs17321515, TBL2 rs17145738, GCKR rs780094, GALNT2 rs4846914 and ANGPTL3 rs12130333, were significantly associated with HLP types 2B, 3, 4 and 5. The findings indicate that: (i) the TG-associated Fredrickson HLP types 2B, 3, 4 and 5 are polygenic traits; (ii) these Fredrickson HLP types share numerous genetic determinants among themselves; and (iii) genetic determinants of modest TG variation in normolipidemic population samples also underlie—to an apparently even greater degree—susceptibility to these rare HLP phenotypes. Thus, the TG-associated Fredrickson HLP types 2B, 3, 4 and 5, although historically considered to be distinct are actually complex traits sharing among them several common genetic determinants seen in GWAS of normolipidemic population samples

    Peroxisomal proliferator activated receptor-γ deficiency in a Canadian kindred with familial partial lipodystrophy type 3 (FPLD3)

    Get PDF
    BACKGROUND: Familial partial lipodystrophy (Dunnigan) type 3 (FPLD3, Mendelian Inheritance in Man [MIM] 604367) results from heterozygous mutations in PPARG encoding peroxisomal proliferator-activated receptor-γ. Both dominant-negative and haploinsufficiency mechanisms have been suggested for this condition. METHODS: We present a Canadian FPLD3 kindred with an affected mother who had loss of fat on arms and legs, but no increase in facial, neck, suprascapular or abdominal fat. She had profound insulin resistance, diabetes, severe hypertriglyceridemia and relapsing pancreatitis, while her pre-pubescent daughter had normal fat distribution but elevated plasma triglycerides and C-peptide and depressed high-density lipoprotein cholesterol. RESULTS: The mother and daughter were each heterozygous for PPARG nonsense mutation Y355X, whose protein product in vitro was transcriptionally inactive with no dominant-negative activity against the wild-type receptor. In addition the mutant protein appeared to be markedly unstable. CONCLUSION: Taken together with previous studies of human PPARG mutations, these findings suggest that PPAR-γ deficiency due either to haploinsufficiency or to substantial activity loss due to dominant negative interference of the normal allele product's function can each contribute to the FPLD3 phenotype

    Coordinate Regulation of the Escherichia coli Formate Dehydrogenase fdnGHI and fdhF Genes in Response to Nitrate, Nitrite, and Formate: Roles for NarL and NarP

    No full text
    Escherichia coli possesses three distinct formate dehydrogenase enzymes encoded by the fdnGHI, fdhF, and fdoGHI operons. To examine how two of the formate dehyrogenase operons (fdnGHI and fdhF) are expressed anaerobically in the presence of low, intermediate, and high levels of nitrate, nitrite, and formate, chemostat culture techniques were employed with fdnG-lacZ and fdhF-lacZ reporter fusions. Complementary patterns of gene expression were seen. Optimal fdhF-lacZ expression occurred only at low to intermediate levels of nitrate, while high nitrate levels caused up to 10-fold inhibition of gene expression. In contrast, fdnG-lacZ expression was induced 25-fold in the presence of intermediate to high nitrate concentrations. Consistent with prior reports, NarL was able to induce fdnG-lacZ expression. However, NarP could not induce expression; rather, it functioned as an antagonist of fdnG-lacZ expression under low-nitrate conditions (i.e., it was a negative regulator). Nitrite, a reported signal for the Nar sensory system, was unable to stimulate or suppress expression of either formate dehydrogenase operon via NarL and NarP. The different gene expression profiles of the alternative formate dehydrogenase operons suggest that the two enzymes have complementary physiological roles under environmental conditions when nitrate and formate levels are changing. Revised regulatory schemes for NarL- and NarP-dependent nitrate control are presented for each operon

    Combination Synchronization of Three Nonidentical Ecological Systems with Species Invasion

    No full text
    The research investigates synchronizing dynamics of three nonidentical ecological systems, one of which is invaded by an exterior top predator. For studying the effects of species invasion in the synchronizing dynamics, combination synchronization of one drive system and two response systems is designed: the ecological system with species invasion taken as drive system, and the other ecological systems as response systems. Using active backstepping design, the conditions for achievement of combination synchronization are derived. Under the conditions, numerical simulations are performed to demonstrate the synchronizing dynamics of ecological systems under species invasion. The results suggest that mechanism of synchronization plays an important role in determining chaos when ecological systems are interacting with each other
    corecore